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Learning Objectives: 

 

From this module students may get to know about the following: 

1. Proper understanding of the law of conservation of momentum and angular 

momentum. 

2. Why these laws of conservation require that the electromagnetic field itself must 

be assigned momentum and angular momentum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 

Physics 

 Electromagnetic Theory 

 Conservation Laws - II 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conservation laws – II 

 

This module is a continuation of the study of conservation laws for a system involving electromagnetic fields.  

Whereas in the last module we looked at the law of conservation of energy, in this module we study the laws of 

conservation of momentum and angular momentum. 
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6.1 Electromagnetic force and conservation of momentum 

 

6.1.1 Electromagnetic force  

 

We now study the conservation of linear momentum.  First look at the expression for the total electromagnetic 

force on a charged particle: 

 

  
dt

Pd
BvEqF



 )(      (35) 

 

For a system of charged particles, if we denote the total mechanical momentum of the particles by
mechP


, then 

 

   
i

iiii
mech BvEq
dt

Pd
F )(





    (36) 

 

For a continuous charge and current distribution, we replace qi by charge density )(x


 , iivq


 by the current 

density )(xJ


 and the summation by an integration over continuous distributions; and this leads to 

 

   
V

mech xdBJE
dt

Pd
F 3)(





     (37) 

 

To eliminate direct reference to the sources we use Maxwell’s equations to eliminate ρ and J


 in favour of the 

fields.  From the equation (here we are working with the microscopic fields) 
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t

E
JB





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 ,     (38) 

 



 

7 
 

 

Physics 

 Electromagnetic Theory 

 Conservation Laws - II 

 
 

 

we have 
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Using this and the other inhomogeneous Maxwell equation  

 

  E.0

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we simplify the integrand in (9): 

 

 

)(
1

.

)
1

(.

0

00

0

0

0

BB
t

E
BEE

B
t

E
BEEBJE































    (40) 

 

Now 
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On substituting this relation into (10) above, we have 
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Further, on using the Faraday’s law 
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and adding the null term ).( BB
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 , we have 
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Putting this expression for the integrand in (9), we get 
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If f


 is the force density, i.e., the force per unit volume, then 
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Let us work on the first two terms, )().( EEEE


  and write its ith component (here we are making full 

use of the tensor notation along with summation convention which often proves useful in deriving vector 

relations): 
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The other two terms are obtained by simply replacing E  by B, so that 
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  This leads to the following expression for the components of the force density 
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We define the symmetric Maxwell stress tensor Tij: 
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In terms of the stress tensor the expression for the force density takes a simple form 
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Further, remember that )(
1
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BEHE



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 is the pointing vector S


 and 
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1

c
  so that finally 
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The total force on the charges inside volume V is therefore 
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The first integral can be converted into a surface integral by use of Gauss theorem as applied to tensors 

(  




S
jij

V
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danTxdT
x

3
).  This provides an alternative expression for the force: 
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Often the dyadic notation T


 is used to denote a tensor of rank two which is described by two indices.  In that 

case nT ˆ.


 represents a vector, the scalar product of tensor with a vector.  In this notation we have 

 

  xdS
dt

d

c
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S V
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1
ˆ. 


      (54) 

 

Whenever S


 is independent of time, the second term drops out and the electromagnetic force can be expressed 

entirely in terms of the stress tensor at the boundary.  Physically T


 is the force per unit area i.e., stress acting on 

the surface.  Or, in terms of components, ijT  is the force per unit area in the ith direction on a surface oriented in 

the jth direction.  The diagonal elements, zzyyxx TTT ,, , represent pressures and the non-diagonal elements 

represent the shear stresses. 

 

6.1.2 Conservation of momentum 

 

We now come to the conservation of momentum of the system.  Remember that the force represents the rate of 

change of mechanical momentum of the charges.  Bringing the second term in equation (53) or (54) to the left 

hand side, we have 

 

   
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
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x
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   (55) 

 

The quantity  

 

  BES
c

p field


 02

1
  

 

can be identified with the density of momentum of the electromagnetic field.  Then 

 
VV

i xdBExdS
c

3

0

3

2
)(

1 
  is the total momentum of the electromagnetic field, fieldP


, within the volume V: 
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so that 

   
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d
ˆ..)( 3
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    (56) 

 

In terms of components 

 

   



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S
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V
ij

j

ifieldmech danTxdT
x

PP
dt

d 3)(     (57) 

 

This equation is the statement of conservation of angular momentum.  The term jijnT  is the ith component of the 

flow per unit area of momentum across the surface S into the volume V. 

 

If mechp


 is the density of mechanical momentum and fieldp


 that of electromagnetic field momentum, then the 

differential form of the law of conservation of momentum is 

 

  ij

j

ifieldmech T
x

pp
t 


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


)(


      (58) 

 

Evidently, ijT  is the momentum flux density, playing the role of current density J


 in the continuity equation 

or energy flux density in the Poynting theorem.  Specifically, ijT  is the momentum in the ith- direction 

crossing the surface in the jth direction per unit area per unit time. 
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Notice that the Poynting vector S


 plays two different roles.  Whereas S


 is the energy flow per unit area per 

unit time,  S
c


2

1
 is the momentum per unit volume stored in those fields.  Similarly ijT  plays a double role, 

whereas ijT  is the electromagnetic stress acting on a surface,  ijT  is the flow of momentum. 

 

 

6.2 Conservation of Angular Momentum 

 

It should not come as a surprise now that like energy and momentum, the electromagnetic field is also endowed 

with angular momentum.  A proper understanding of the law of conservation of angular momentum demands 

that the electromagnetic field possess angular momentum.  The derivation of the law of conservation of angular 

momentum proceeds on the same lines as energy and momentum.   

 

The starting point is the same expression for the Lorentz force: 

 

  
dt

Pd
BvEqF



 )(      (\59) 

 

Or, for a continuous charge and current distribution 

 

   
V

mech xdBJE
dt
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F 3)(





     (60) 

 

Introducing the density of mechanical momentum, mechp


, we have 

 

  BJE
t

pmech






       (61) 

 

The right hand side is written in term of the fields only [see equation (43)]: 
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The mechanical angular momentum for a particle is defined as pr


 . For a continuous distribution just as 

momentum is defined as the volume integral of momentum density, mechp


, angular momentum  is defined as the 

volume integral of angular momentum density 
mechl


 by 

 

   V
mechmech xdlL 3


; 
mechmech pxl


    (62) 

 

It follows from equation (36) that 
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Bringing the last term to the left hand side and writing the ith component of the vector equation, we have 
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But 
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Substituting this expression, the above equation becomes 
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The second term, kjijkT  is zero since ijk  is anti-symmetric in all its indices while kjT  is symmetric.  The right 

hand side can be put in a more symmetric form. Since j and k are both dummy indices they can be freely 

interchanged.  Further ijk  is anti-symmetric in j and k.  Making use of these properties, we have 
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Replacing the right hand side of equation (66) by the above expression 
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The interpretation of this equation is now clear.  )(0 BE


  is the momentum density of the field.  Therefore 

)}({0 BExl field


   is the angular momentum density in the electromagnetic field.  The term on the right 
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hand side represents the rate of flow of angular momentum into the volume V.  The integral form of the law of 

conservation of angular momentum is obtained by taking the integral of the above expression over the volume 

and takes the form 

 

danTxTxxdTxTx
x

ll
dt

d
l

V S
jlkkljijkjlkklj

l

ijkfieldmech   



 )(

2

1
)(

2

1
)( 3 


  (70) 

 

We define a third rank tensor jlkkljjkl TxTxM  , which has nine independent components because of anti-

symmetry of the expression under kj   which is made explicit by the presence of ijk .  By making use of the 

dyadic notation the flux of angular momentum can be described by the tensor 

 

  xTM


 .       (71) 

 

 

Summary 

 

1. In this module we have tried to provide to the student a proper understanding of 

the law of conservation of momentum and angular momentum in the presence of 

electromagnetic field. 

2. We explain why for the laws of conservation of momentum and angular 

momentum to be valid locally, the electromagnetic field itself must be assigned 

momentum and angular momentum. 

3. We learn that the momentum density of the electromagnetic field is described in 

terms of a second rank tensor, whereas the angular momentum density of the field 

is described in terms of a third rank tensor. 

 


