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Learning Objectives:

From this module students may get to know about the following:

1. Proper understanding of the law of conservation of momentum and angular
momentum.

2. Why these laws of conservation require that the electromagnetic field itself must
be assigned momentum and angular momentum.
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6. Conservation laws — 11

This module is a continuation of the study of conservation laws for a system involving electromagnetic fields.
Whereas in the last module we looked at the law of conservation of energy, in this module we study the laws of
conservation of momentum and angular momentum.
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6.1 Electromagnetic force and conservation of momentum
6.1.1 Electromagnetic force

We now study the conservation of linear momentum. First look at the expression for the total electromagnetic
force on a charged particle:

ﬁ:q(éwxé):‘i—f (35)

For a system of charged particles, if we denote the total mechanical momentum of the particles by P then

mech '

dpmech qu (Ei+\7i X él) (36)

IE=—=
dt ,

For a continuous charge and current distribution, we replace q; by charge density p(X), q,V; by the current

density J (X) and the summation by an integration over continuous distributions; and this leads to
F = P L[ (4 B @
dt

To eliminate direct reference to the sources we use Maxwell’s equations to eliminate p and J in favour of the
fields. From the equation (here we are working with the microscopic fields)

§x§=y0(j+50%), (38)
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we have
J="VxB-g — 39
0 (39)
Using this and the other inhomogeneous Maxwell equation

p=&V.E

we simplify the integrand in (9):

pé+5xé=goéﬁé+(ivxs*_%%)xs
Ho - (40)
G EVE+eBx - L Bx(x8)
ot

Now
O ExB)-ExB i (E)xB-ExB_ExE
ot ot ot ot ot
Or

Bx(—)=——(ExB)+Ex— (41)

On substituting this relation into (10) above, we have
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pE+IxB =g, (EVE+Ex) - L Ex(VxB)-s2(ExB)
ot’  u, ot
- (42)
- L (EVE-BxVxB+ExB 2 (Exp)
Arx ot ot
Further, on using the Faraday’s law
VxE=-B
ot
and adding the null term B (V.B), we have
PE +JxB=g[EV.E-Ex(VxE)]
(43)

+ L1B(0.8) - Bx (VB 2 (ExB)

0

Putting this expression for the integrand in (9), we get

(44)

Y

= [ {4 [EV.E—Ex(Vx )]+ —[B(V.6)— Bx(Vx é)]_gog(éx B)}d*x
Ho

If f is the force density, i.e., the force per unit volume, then
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—Ex(Vx E)]+i[§(€.|§)—|§x(6x I§)]—£O§(I§x B)  (45)

0

f - o [EVE

Let us work on the first two terms, E (ﬁ.E) —Ex (? X E) and write its ith component (here we are making full
use of the tensor notation along with summation convention which often proves useful in deriving vector

relations):

OE,

[EV.E-Ex(VxE)] Ean E.(VXE) Ean E
E-EX(VXE) =8 ——— —&Ej\VXE) =8 — =&y Eibum —
o, ox; T ox
oE. oE. OE. .
—E (0,0~ 0n0)E, T = E T B, T E T e
ox ' ox ox ) ox

j j
0 1 - =
=—(EE, —=(E.E)J;
8X-( i—j 2( ) u)

]

The other two terms are obtained by simply replacing E by B, so that

[EVE—Ex(VxE)] +-—[B(V.E)—Bx(¥xB)]
Ho (47)

0 1 == 1 1 ==
=—1/[&/(EE; —=(E.E)s; ) + —(B;B; —=(B.B)o;
6XJ— [80( i—j 2( ) u) ,UO( =] 2( ) u)]

This leads to the following expression for the components of the force density

0 l,--= 1 1 == o - -
f; :Za[go(EiEj _E(E-E)é}j)+;0(BiBj _E(B-B)é‘ij)]_goa(E x B) (48)

J

We define the symmetric Maxwell stress tensor Tj;:
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T, =[6(EE, - S(EE)S,) + (BB, - L (B.B)5,)] (49)
2 Jz 2

0
In terms of the stress tensor the expression for the force density takes a simple form

0 0,2 &
f = &T“ — &, a(E x B), (50)

]

Further, remember that (E x H) = i(E x B) is the pointing vector S and Eoldy = ciz so that finally

0

0 0 0 10
fi=(—T; —&tto—=S) = (T, __Z_Si) (51)
OX; . ot OX; 't ot
The total force on the charges inside volume V is therefore
¢ 0 3 l¢ 0.3
F _jvgjﬂjd X_?Ivasid X (52)

The first integral can be converted into a surface integral by use of Gauss theorem as applied to tensors

(L %Tﬁd ’ = §3Tijnjda). This provides an alternative expression for the force:
]

) 1d e
F _§5Tiinida_c_za.[vsid X (53)
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Often the dyadic notation T is used to denote a tensor of rank two which is described by two indices. In that
case T A represents a vector, the scalar product of tensor with a vector. In this notation we have

1
2

- . d =5
szsT.nda—C ade X (54)

\

Whenever S is independent of time, the second term drops out and the electromagnetic force can be expressed
entirely in terms of the stress tensor at the boundary. Physically T is the force per unit area i.e., stress acting on
the surface. Or, in terms of components, T; is the force per unit area in the ith direction on a surface oriented in
the jth direction. The diagonal elements, T,,T, T, , represent pressures and the non-diagonal elements
represent the shear stresses.

6.1.2 Conservation of momentum

We now come to the conservation of momentum of the system. Remember that the force represents the rate of
change of mechanical momentum of the charges. Bringing the second term in equation (53) or (54) to the left
hand side, we have

d 1d s, [ O 3,
5 et +C—ZEJ'V Sd X_'[Vﬁ_)(jTijd x={T,nda (55)
The quantity
~ 1z = =
Pres = 7S =&ExB
c
can be identified with the density of momentum of the electromagnetic field. Then

1 = = _
C_2le S,d°x = gofv (E x B)d°x is the total momentum of the electromagnetic field, P, , within the volume V:

11
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Isfield = J.v 50(E X B>)dgx

so that

%(ﬁmech +Prog) = iﬁfd x= ifsf'ﬁda 0)

In terms of components

d 0
at (Prech * Preia )i = J.V ngijd X = fs T;n;da (57)

This equation is the statement of conservation of angular momentum. The term T;n; is the ith component of the
flow per unit area of momentum across the surface S into the volume V.

If P IS the density of mechanical momentum and Py, that of electromagnetic field momentum, then the
differential form of the law of conservation of momentum is

0, L\ 0
E( Prech + Prewg )i = aTij (58)

J

Evidently, —T; is the momentum flux density, playing the role of current density J in the continuity equation

or energy flux density in the Poynting theorem. Specifically, —T; is the momentum in the ith- direction
crossing the surface in the jth direction per unit area per unit time.

12
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Notice that the Poynting vector S plays two different roles. Whereas S is the energy flow per unit area per

. 1= . . . . -
unit time, C_ZS is the momentum per unit volume stored in those fields. Similarly T, plays a double role,

whereas T; is the electromagnetic stress acting on a surface, —T,; is the flow of momentum.

6.2 Conservation of Angular Momentum

It should not come as a surprise now that like energy and momentum, the electromagnetic field is also endowed
with angular momentum. A proper understanding of the law of conservation of angular momentum demands
that the electromagnetic field possess angular momentum. The derivation of the law of conservation of angular
momentum proceeds on the same lines as energy and momentum.

The starting point is the same expression for the Lorentz force:
F=q(E+VxB)=— (\59)
Or, for a continuous charge and current distribution
£ =B [ (£ 1 T B)a%x ()
dt
Introducing the density of mechanical momentum, p,..,, we have

OPrmech =S BN =1
— e = +JxB 61
s (61)

The right hand side is written in term of the fields only [see equation (43)]:
13
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PE +J x ”:go[éﬁ.é—Ex(ﬁxE)]+i[é(ﬁ.§)—B“x(ﬁxé)]—gog(éxé)

0

The mechanical angular momentum for a particle is defined as I x p. For a continuous distribution just as
momentum is defined as the volume integral of momentum density, P,..,. ahgular momentum is defined as the

volume integral of angular momentum density Fmech by
_ e
Lmech = J‘V Imechd X3 Imech =XX pmech (62)

It follows from equation (36) that

B s - =0 o
(XXpmech)=xxa(pmech)=xx(pE+‘]XB)

= X x{&,[EV.E - E x(Vx E)]+i[§(§.§)— Bx (V x |§)]—50§(Ex B)} (63)

Ho

Bringing the last term to the left hand side and writing the ith component of the vector equation, we have

—

almech 0 % x _’X )
[T"'go a{x (E B)}]i
Lo XX [(EV.E - Ex (Vx E)]+ L % x[B(V.8) - B x (V x B)J}

Ho

— e, X {&,[EV.E— Ex (VxE)]+ ~[B(V.B) - Bx(VxB)]}

0
(64)
But

14
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go[Eﬁlg —Ex(Vx E)]k +i[§(§§) —Bx(Vx é)]k
Ho
¢ B=! oT,
=6—XI[50(E|<E| (E E)5k|)+,u (B B - (B.B)é‘kl)]za‘:I

Substituting this expression, the above equation becomes

ol O re (ExB e
(O 15, SO (X, =2y, T
66
(5X Tkl 8X ) (ax Tk| ) anTkl (66)
£ — ) = &jj
Ei ox, Ta) =& o T o

The second term, &;, T,; is zero since &, is anti-symmetric in all its indices while T; is symmetric. The right

hand side can be put in a more symmetric form. Since j and k are both dummy indices they can be freely
interchanged. Further &, is anti-symmetric in j and k. Making use of these properties, we have

oxXT, 10 10
Eiik ajx <= 5 ox, — (& X T + X% Ty) = Ea?(&jkxj-rm — & X T51)
. ' ! (67)
= 2 uk (X Tkl Xij|)
Replacing the right hand side of equation (66) by the above expression
ol 0, ,= = 1 0
[#Ch"' &y a{x x(ExB)}; = Egijk &(Xkal =XT;) (68)
|

The interpretation of this equation is now clear. &,(ExB) is the momentum density of the field. Therefore

Tﬁeld = g,{X % (E x B)} is the angular momentum density in the electromagnetic field. The term on the right
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hand side represents the rate of flow of angular momentum into the volume V. The integral form of the law of
conservation of angular momentum is obtained by taking the integral of the above expression over the volume
and takes the form

d - - 1 0 1
at (Feen + e ) = .[v Egijk &(Xkal —X%T;)d X = §s Egijk (T — X T;)nda (70)
|

We define a third rank tensor M, = X;T,, — X, T; , which has nine independent components because of anti-

il
symmetry of the expression under j <>k which is made explicit by the presence of &;, . By making use of the

dyadic notation the flux of angular momentum can be described by the tensor

M=TxX. (71)

Summary

1. In this module we have tried to provide to the student a proper understanding of
the law of conservation of momentum and angular momentum in the presence of
electromagnetic field.

2. We explain why for the laws of conservation of momentum and angular

momentum to be valid locally, the electromagnetic field itself must be assigned
momentum and angular momentum.

3. We learn that the momentum density of the electromagnetic field is described in
terms of a second rank tensor, whereas the angular momentum density of the field
Is described in terms of a third rank tensor.
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